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A s imulat ion  of  the correlation that contains pressure f luctuations and determines  the process o f  
redistribution of  energy between the components of  the tensor of  Reynolds stresses is made. The results 
obtained can be used to construct new models of  second-order turbulence. 

Introduction. The solution of the applied problems of hydrodynamics and heat and mass transfer in 

turbulent flows of liquids and gases requires a reliable and universal enough model of turbulence. Its construction 

is usually based on the equation for the second one-point moments: 

DRq 
Dt ~- Fii + Pi] + ~Pi] - 2eli + Dij. (1) 

In Eq. (1), convective transfer and the processes of production (Fij and Pij) are described exactly. The terms that 

contain correlations of pressure fluctuations (~ij) and dissipation (eij) and diffusion (D/y) terms must be simulated, 

since they contain unknown higher-order correlations. In [1 ] an analysis of investigations that deal with the 

simulation of unknown correlations was made; from the results of this analysis the following conclusions were 

drawn: 
1) to increase the accuracy and universality of the second-order turbulence models more accurate models 

are needed for the correlations ~i) and eij; 
2) at the present time there are no procedures for direct measurements of these correlations; therefore the 

available experimental data cannot be used to refine the available approximations; 

3) to simulate unknown correlations, it is advisable to use the results of direct numerical simulation of the 

Navier-Stokes nonstationary equations. 
The aim of the present work is to determine the coefficients and form of approximations for the correlation 

~ij that describes the process of the redistribution of energy between the components of the tensor of Reynolds 

stresses. In contrast to earlier published investigations the form of approximations and empirical coefficients were 

found by means of direct comparison with the already available data of numerical solution of the Navier-Stokes 

nonstationary equations, i.e., by direct numerical simulation (DNS). Attention was rr/ainly paid to the search for 

the means of correct accounting for all the main factors that influenced the process of redistribution of the energy 

of turbulence via pressure pulsations irrespective of the complexity of the relations obtained. It was assumed that, 

if need be, the approximations obtained could be used as a basis for deriving simpler equations. 

I.  M o d e l s  fo r  the  C o r r e l a t i o n  of ~(2)ij. When performing s imula t ion ,  the corre la t ion  ~ij  -- 
((Pui,j) + (puj,i))/p is usually represented as a sum of three terms: 

d~ij ---- tl~(1)i j q- tl)(2)i j -I- t:l)(a)ij, (2) 

where qb(i)iy depends only on the interaction of velocity fluctuations among themselves and reflects the fact that 

their field approaches an isotropic state. In [1 ] the simulation of the term ~0)iJ was made, as a result of which the 

following approximation was obtained: 
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~(s)~j = _ Clbi j +  C2 b +-~ II6 
c ' ( 3 )  

C 1 = C l o / + C l l f F ,  C 2 = 3 C 1 0 / ,  C lo /=  1.2,  C l l f = 4 . 2 8 ,  

~(2)ij depends on the interaction of the mean shift  in the velocity with velocity fluctuations, and ~ (3 ) i / t akes  the 

effect of the wall into account. 

Detailed surveys of the works and descript ion of the technique used to simulate the term ~(2)ij a re  published 

in [2-4 ]. In simulation of this term, it is usually assumed that the gradient  of averaged velocity can be taken  outside 

the integral in formal solution of the Poisson equation. The results of direct numerical  simulation [5 ] showed that 

this assumption is satisfied approximately for a shea r  flow in a plane channel .  In this case the express ion for the 

unknown term is sought in the form 

cI)(2)i ] = 4Up,q (Mijpq + Mq]pi ) , 

where Mi]pq is a four th-order  tensor, which can be expressed in the form of a series in the degrees of the anisotropy 

tensor  of the Reynolds stresses bi]. It is shown that  the most general form of this dependence  is the quadrat ic  one. 

In this case in the approximation for cP(2)i ] 15 coefficients appear which must  be determined from exper imental  

data. To  minimize the number  of empirical coefficients and to calibrate them, additional conditions were  used in 

[2 ], which were based on the first principles. T h e s e  are: tensor invariance, f ield-form invariance, feasibil i ty of the 

model, etc. With allowance for these principles, the approximation for r can be written in a general  form as 

I 2 = 4 --g- dxSiy + d z bipSoj + bjpSpi - ~ (bS) c~i) + d3 (bioWpj + bjp Woi) + 

( 2 )  + d 4(bS) b 2+-~II~3i] + d  4(b2S) b i ] + d  5(bS) bi]+ 

t:I~(2)i] 
E 

+ d e b Spj + bipSpi-  + d 7 (b pWpj + 2 (4) 

I 1 P  1 
where Si] = -~(Ui,j + ULi); (bS) = biiS]i = - ~  -~; Wi] = ~(Ui,j - U],i); (b2S) = bpqbqmSmp, and the coefficients d i 
depend on the scalar invariants H and 111. 

The  most well-known approximations for r employ only several first terms of expansion (4): 

the model of [6]: d 4 ---- d 5 = d 6 = d 7 = d 8 = 0, 4d 1 = 0.8, 4d 2 = 1.75, 4d 3 = - 1 . 3 1 ;  

t h e m o d e l o f  [ 7 ] : d 4 = d 5 = d 6 = d 7  d 8 0, 4d I = C 3 -  C 3 ( - 2 1 D  1/2, 4 d 2 =  1 . 2 5 , 4 d 3 = - 0 . 4 ,  C 3 = 0 . 8 ,  

C 3 = 1.3; 
the model of [2 ] contains cumbersome dependences  of d i on the invariants H and I lL  
The  authors of [2 ] showed that af ter  the use of the conditions of invariance and feasibility, only  seven of 

the above-mentioned 15 coefficients are to be found  experimentally.  Exper imenta l  data and the resul ts  of direct 

numerical  simulation were used to determine them. This is accomplished by  comparing the results of calculations 

of r by formula (4) with experimental  data for  the difference (r - r where 

dPO)i] = - (2 + 15.5F 1/2) ebi]. (5) 

In making this indirect comparison all the uncertaint ies  in the description of the term ~(l)ij  by formula  (5) exert  

a direct effect on the magnitude of the coefficients d i and on the accuracy of the determinat ion of ~(2)ij. Earl ier  

[1 ] it was shown that  relation (5) describes DNS data  with a large uncer ta inty  [5 ]. Therefore ,  it should be expected 

that the coefficients presented in [2 ] will need a more  precise definition. 

The  appearance of the data of direct numerical  simulation of channel  flow radically changes the situation, 

since they can be used to find the coefficients of Eq. (4) by comparing direct ly the DNS data for  ~(2)i] with 
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Fig. i. DNS data for the components of the tensor  Fij (a) and the dependence  

of these components on invariant H (b): 1) Fxx, 2) Fyy, 3) Fxy. 

corresponding theoretically justified approximating relations. U n d e r  these conditions the probabil i ty of obtaining 

an unambiguous result is increased many-fold .  

2. Results of Simulation of the Correlat ion of tI)(2)i ]. T o  determine the coefficients di,  w e  will write Eq. (4) 

in the Cartesian coordinate system: 

1 { 2  2 2 . . ~  + 1 
Fxx = -~ d 2 - d 3 + d 4 ( + bxy + -~ + d4bxxb + dsbxx + -j d6 b+ - d7 b+ + dsb 8 , (6) 

Fyy = -~ d 2 + d 3 + d 4 byy + bxy + -~ H + d4byyb + d5byy + -~ d6 b+ + d7 b+ - dsbs ,  (7) 

+ 2 2 
Fxy= d 1 + d2 b+ + d3b-  + 4d4b bxy + 2d5bxy + d6b 6 + d7b+b - _ d a b s b - ,  

where Fxx = (~(2)xx/4eXlbxy; Fyy = (~(2)yy/4eXlbxy; Fxy = (~(2)xy/2eXl; X] = ( K / e ) ( d U x / d y ) ;  b + = bxx 

_ 2 2 .  2 _ bxxbyy" bxx byy; b 6 = b2x + 2bxy b;y, b 8 = bxy 

(8) 

+ byy; b -  = 

To find the coefficients d i, the distributions O(x)q/e = F ( Y  +) presented in [5 ] are  used, which are shown 

in Fig. la. It is known [I ] that the value of invariant H changes from 0 to - 1 / 3  and  of invariant  I I I  from - 0 . 0 1  

to 2 /27.  Therefore ,  the dependence of d i on the invariants I I  and  I I I  can be sought in the form of a series: 

d i = dio + di lH + di2III + di3II HI  + ... (9) 

We note that invariant 111 is much smaller  than invariant H. Therefore ,  as a first approximat ion we will use only 

the first two terms of expansion (9). 

From relations (6)-(8) it follows that  the functions Fxx, Fyy, and Fxy depend on the value of the coefficients 

d a, scalar invariant H, and of the components  of the anisotropy tensor  bq. According to Eq. (9), the coefficients 

d a (a = 1 - 8 )  depend in turn on the invariants H and III.  Therefore ,  it is worthwhile to investigate in which way 

DNS data are connected with these invariants.  The  values of Fq as functions of invariant  / /  are shown in Fig. lb.  

We will pay at tention to the behavior of the considered functions in the case of a s t rongly anisotropic turbulence,  

when the absolute value of scalar invariant  H is increased. In [ 1 ] this problem was given special examination.  For  

this purpose, the diagram of the states of turbulence was considered,  which showed that  in the limiting case of 

one-dimensional  turbulence invariant H t ended  to the value - 1 / 3  and  I I I  to  2 / 2 7 ,  whereas  the process of 

redistribution of energy between the components  of the tensor  of Reynolds stresses ceased. Consequently,  the 

tensor t~(2)ij/e ~ 0 and the functions Fxx, Fyy, and Fxy must also tend to zero, when H --- - 1 / 3  and I I I  --, 2 /27 .  

The character  of the dependence  of separate functions in Eqs. (6)-(8) on invariant  H is shown in Fig. 2. 

It is seen that some of the distributions presented are approximate ly  similar. Unde r  these  conditions there  is a 

great chance of finding several systems of the coefficients da, using which it is possible to give a sat isfactory 

description of the t e r m  tl~(2)i ]. In o ther  words,  the problem of an unambiguous selection of the system of coefficients 

requires a careful and substantiated approach.  For this purpose,  we will rewrite Eqs. (6) and (7) in the form of 

their sum and difference: 
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Fig. 2. Dependence of b +, b- ,  b+b - ,  b 6, and b 8 on invariant II. 

Fxpy d 2 d4H + d 5 + d 6 , (1 O) 

Fxmy = - d 3 + d4b+b - + ~ dsb-  - d7 b+ (11) 

where 

3 1 
Fxpy = "~ (Fxx + Fyy) ; Fxmy = -~ (Fxx - Fyy ) .  

Here Fxpy ---, 0, Fxmy "-" 0, Fxy ~ 0, when H ~  - 1 / 3  and 111--> 2/27. Substituting these conditions into Eqs. (8)- 

(11), we obtain three additional relations that establish connections between the coefficients da3: 

1 ( 1 3 1 1 ) (12) 
d20 = -~ d21 - d40 + -~ d41 - ~ d50 + ~ d51 - d60 + ~ d61 , 

1 ( 1 3 1 1 2 )  (13) 
d30=-~  d31 + d40--~d41 + - ~ d 5 0 - - ~ d 5 1  - d70+-~d71 + ~ d s o  , 

2 1 1 4 4 (14) 
d l l =  3d10 + - ~ d 4 0 - ~ d 4 1  + d 5 0 - 3 d 5 1  + - 3 d 6 0 - 9 d 6 t ,  

where 

dlo = 0.2. (15) 

Expression (15) follows from the theory of isotropic turbulence. From Eqs. (13) and (14) it is seen that the 

coefficients dl0 and dl l  are established automatically, if the coefficients of relations (10) and (11) are known. 

Thus, equations written in the form of Eqs. (8), (10), and (11) allow one to solve the problem of determining the 

system of coefficients da3 by stages. First, we find the values of d 2, d 4, and (3d5/2 + d 6) from the distribution for 
Fxpy. Then we obtain d3, ds, dT, and d 8 from the distributions for the functions Fxmy and Fxy and the coefficients 

dlo and dll  from relations (14) and (15). 
We will consider Eq. (10) together with relation (12). This equation contains the coefficients d 2, d 4, d 5, 

and d 6, each of which, in accordance with series (9), may depend on the scalar invariants H and II1. There are 

DNS data for the function Fxpy , invariant / / a n d  for the function b + to determine these coefficients (see Figs. 2 

and 3). Using 10 values of the enumerated functions for 10 points of the boundary layer in a channel and 

substituting them into relation (10) we obtain 10 linear equations for unknown coefficients. From Fig. 2 it is seen 

that b+~ - / / .  Therefore, from the data available it is possible to determine only one coefficient d20 and two groups: 
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for Fxpy: 

Variant  1 

d20 = 0.48 - 0.49 
d21 - d40 = 1.5d5o - d60 = 1.45 - 1.55  
d41 + 1.5d51 + d61 = 0 
accuracy 6 = 10 9/o. 

0.t~t \ �9 - F ~ y  
L \ 

O.2 

I I . I 

0 0.05 0.1 0.15 0.2 025 0.% -II 
Fig. 3. DNS data for the functions Fxpy, Fxmy, and Fxy. 

1.5d50 - d60) and (d41 + 1.5d51 + d61). Here there exist two var iants  of the descr ip t ion  of the da ta  

Variant  2 

d20 = 0.58 - 0.6 
d21 - d40 - 1.5d50 - d60 = 3.2 - 3.3 
d41 + 1.5d51 + d61 = - ( 4 . 3  - 4.6) 
accuracy 6 = 3 ~ .  

Thus ,  the  coefficients dlo and  d20 are  known, while for de termining  the remaining 14 values of dab it is 

possible to write 10 equat ions for the function Fxmy and 10 equations for the function Fxy. Moreover ,  there  are  three  

re la t ions  ( 1 2 ) - ( 1 4 )  a n d  two re la t ions  for  the  groups  (d21 - d40 - 1.5d5o - d60) a n d  (d41 + 1.5d51 + d61). 

Consequent ly ,  it r e m a i n s  to de te rmine  on ly  nine independent  coefficients.  This  can be d o n e  by  solving the  

overde termined s y s t em  consisting of 20 l inear  equations. Analysis of the results of co r respond ing  calculations 

showed that  it is impossible  to obtain an unambiguous  solution for the sys tem of unknown coefficients,  because  

some of the functions shown in Fig. 2 have s imilar  distributions. For example,  in the equation for  Fxmy there is the 

scalar invariant  H at d31 and  the function b + at d70. Since b + =  I I ,  it is possible to f ind on ly  the difference 

(d31 - d70) when solving the system of equat ions for the coefficients da/~. A similar  situation also occurs when other  

coefficients are de te rmined .  

T h e  above compara t ive ly  detailed description of the technique of de termining unknown coefficients in the 

approximation for  ~(2)q shows that it is somewhat  difficult to obtain an unambiguous  result  f rom DNS data for  a 

single specific flow. To  de termine  them, in the present  work we will consider a simpler var iant  of re la t ion  (9), when 

the coefficients d a are  a s sumed  to be cons tants .  This  does not mean  that  they really a re  i ndependen t  of the  

invariants 11 and  111. Possibly,  there is such a connection, but here  we seek some mean values of the coefficients 

d a in that  range  of sca lar  invariants,  which is observed in a developed channel  flow. We no te  tha t  for a channel  

flow the range  of var ia t ion of the scalar invar iants  / /  and I I1  is very large, therefore  we m a y  hope  tha t  the sys t em 

of empirical coefficients obta ined  in this way  will be universal enough. Therea f te r ,  as the DNS da t a  will appea r  for 

other types of flows, this sys tem of coefficients can be refined. 

Within the  f r amework  of this a s sumpt ion  the coefficients dlo and  d2o are known, the  coefficient d l l  is 

defined by Eq. (14),  and ,  to determine the remaining  six coefficients d30 - dso, there are  two re la t ions  (12) and  

(13) and the value of one  group ( - d 4 0  - 1.5d50 - d60) obtained earlier by considering the equa t ion  for  the function 

Fxpy. Consequent ly ,  the  n u m b e r  of independen t  coefficients decreases to three,  and to de t e rmine  t hem there  is an 

overdetermined s y s t e m  of 20 l inear equations.  It  was solved for unknown coefficients. An ana ly s i s  of the resul ts  

obtained showed that  if the coefficients d 2 - d 8 were constants,  then the sys tem of the coeff icients  sought had  a 

single-value solution: 

dlo = 0 . 2 ,  d l l  = - 1 / 3 ,  d 2 = 1 / 2 ,  d 3 = - 0 . 3 ,  d 4 =- 0 . 2 ,  

d s = -  1 .2 ,  d 6 = O . 1 ,  d 7 = - 0 . 7 ,  d 8 = O .  
(16) 
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Fig. 4. Comparison of the results of calculations with DNS data for the 
components of the tensor @(2)q/e: 1) formula of [6], 2) [2], 3) [7], 4) 

calculation by Eq. (4). The dots denote DNS data. 

Figure 4 presents a comparison of the DNS data with the results of calculations of @(2)i] by the models of 

[2, 6, 7 ] and by formula (4) using the coefficients written in Eq. (16). It is seen from the figure that the models 

given in [2, 6, 7 ] satisfactorily describe the components aP(2)xx/e and ~P(2)xy/e for a low degree of anisotropy of 

turbulence, which is observed in the axial region of flow, and characterize the distributions of the commponent 

tI~(2)yy/e quite unsatisfactorily. This indicates that the approximations published earlier for the tensor considered 
do not take account of certain essential details in the mechanism of the redistribution of energy induced by pressure 

fluctuations. The models published in [2, 6, 7 ] must be recognized as inadmissable for describing the distributions 

of ~(2)iy/e in the near-wall portion of the boundary layer (Y+ < 60), which is characterized by a high degree of 

anisotropy of turbulence. The data presented show that the use of the proposed model makes it possible to calculate, 
with a high enough accuracy, the distributions of the correlation of ~(2)q. It is possible to assume that a high degree 

of description of all three distributions shown in Fig. 4 correctly reflects the mechanism of the pressure fluctuations- 

induced redistribution of energy between the components of the tensor of Reynolds stresses. 

3. Model for the Correlation of r For the first time the question about the necessity to model the 

term ~P(3)q/e, which takes account of the effect of the wall on the process of the redistribution of energy due to 

pressure fluctuations, was considered in [6 ]. The authors used the wall functions that incorporated a specially 

normalized distance from the investigated point of the flow to the solid wall. However, the DNS data showed 

unambiguously that the term @(3)tile was negligibly small over the entire region of the flow up to the layers located 

in the immediate vicinity of the wall. Due to this, the authors of [8 ] rejected their own suggestion to use wall 

functions. As the results of the present work and of [1 ] showed, the unsatisfactory description of the process of 

pressure fluctuations-induced redistribution of energy was associated in [2, 6, 7 ] with the unsatisfactory charac- 

teristic of the terms aPO)q/e and ~P(2)il/e, rather than with the effect of the wall. Therefore, we assume 

,vO) q = o .  (17)  

4. Results of Simulation of the Correlation of Deformation Rates with Pressure Fluctuations. The total 

approximation for the correlation of the rates of deformation with pressure fluctuations can be made by relations 
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(2), (3), (4), (17) and by the coefficients written in (3) and (16). Figure 5 demonstrates the distributions of the 
components of the tensor (I)ij across the boundary layer for a developed channel flow. Below we present the values 

of the mean, for all the components, error in the description of DNS data (5 = V ~ ( 2 ) 6 / P )  , when using the relations 
and empirical coefficients suggested in the works published: 

the model of Launder, Reece, and Rodi [6], 5 = 47~o; 

the model of Shih, Lumley [2 ], 5 = 38 ~ ;  

the model of Speziale, Sarkar, and Gatski [7 ], 5 = 48%; 

model (4), 5 = 5%. 

The distributions of the components of the tensor (1)/y for a homogeneous channel flow with a constant shift 
in velocity are presented in Fig. 6. The values of the normalized velocity gradient, which is the sole parameter that 

determines this type of flow, are presented as abscissa. The dots denote the data of [9-11 ]; the curves give the 

results of calculations by the proposed model and the models of [2, 6, 7 ]. It is seen from the figures that the models 

of [2, 6, 7 ] agree satisfactorily with experimental data for homogeneous flow. This is explained by the fact that 

the empirical coefficients of the models considered were determined from the results of experiments for 

homogeneous flow. The unsatisfactory description of the DNS data (Fig. 5), especially in the near-wall region of 

flow, indicates that these models ignore all the essential mechanisms in the process of redistribution of energy 

between the components of the tensor of Reynolds stresses. In the proposed model the empirical coefficients were 

determined on the basis of the DNS data. The results presented in Fig. 6 show that this model is also rather good 

for describing experimental data for homogeneous flow with a constant shift in velocity. 

Thus, on the basis of DNS data a relation was obtained that approximates the correlation of the rates of 

deformation with a pressure gradient. The approximation has a rather complex form, since it contains terms that 

are quadratic in the tensor of anisotropy of Reynolds stresses. However, the use of the approximation developed 

allows one to obtain a many-fold increase in the accuracy with which the process of redistribution of energy due 

to pressure fluctuations is described, especially in the wall region of flow and in flows with a high degree of 

anisotropy of turbulence. At the present state of development of the technique of computations the complexity of 

approximation cannot exert a substantial effect on the time of computations; therefore the results of the work can 

be used in numerical calculations based on the models of 2nd-order turbulence. 

N O T A T I O N  

Rij = (uitt.i), single-point correlation of velocity fluctuations; Fi] = ((fiu]) + (fjui)) / t9, the term representing 

the production of the energy of turbulence caused by the effect of external force; Pij = - - (R ikUj ,k  + gjkUi ,k) ,  

production of the energy of turbulence by the mean velocity gradient; (I) 6 -- ( l / p )  < p(ui ,  j + uj,i) >, correlation of 

1 
the ratcs of deformation with pressure fluctuations; Dij = - [(uiujttk) + -~((PUi)C~jk + (ptt/)Sik -- v(tt iuj) ,k ],k, diffusion 

term; eij = v(ui ,kuLk),  dissipation term; u i, f i ,  P, fluctuations of velocity, external force, and pressure, respectively; 

p, density; v, kinematic viscosity; 6 i f  Kronecker symbol; sharp brackets denote averaging; the comma in front of 

Ri] 1 56  , tensor of the anisotropy of Reynolds stresses; d 0 the subscript denotes differentiation; bij - 2 K  3 = 

1 
- ~ 5if tensor of the anisotropy of the rate of dissipation of Reynolds stresses; K, kinetic energy of turbulence; 

P, production of the energy of turbulence; e, rate of dissipation of the energy of turbulence; H = - b i k b k j b i j / 2 ,  111 

= bikbkjb6/3,  scalar invariants of the anisotropy of the Reynolds stresses of the 2nd and 3rd orders; F = 1 

+ 9 H  + 27111, scalar invariant that determines the degree of anisotropy of turbulence; (I)(1)ih tensor that describes 

the approach of turbulence to an isotropic state; (1)(2)ih "fast portion" in the correlation of the rate of deformation 

with pressure fluctuations; (I)(3)i ], term taking account of the effect of the wall on the redistribution of the energy 
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of turbulence; d a and daB, coefficients of approximation; Y+ = YUo/V , dimensionless distance from the wall; u o, 

dynamic velocity on the wall. 
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